131 research outputs found

    Far-infrared dust properties in the Galaxy and the Magellanic Clouds

    Get PDF
    A recent data analysis of the far-infrared (FIR) map of the Galaxy and the Magellanic Clouds has shown that there is a tight correlation between two FIR colours: the 60 um-100 um and 100 um-140 um colours. This FIR colour relation called ``main correlation'' can be interpreted as indicative of a sequence of various interstellar radiation fields with a common FIR optical property of grains. In this paper, we constrain the FIR optical properties of grains by comparing the calculated FIR colours with the observational main correlation. We show that neither of the ``standard'' grain species (i.e. astronomical silicate and graphite grains) reproduces the main correlation. However, if the emissivity index at ~ 100--200 um is changed to ~ 1--1.5 (not ~ 2 as the above two species), the main correlation can be successfully explained. Thus, we propose that the FIR emissivity index is ~ 1--1.5 for the dust in the Galaxy and the Magellanic Clouds at ~ 100--200 um. We also consider the origin of the minor correlation called ``sub-correlation'', which can be used to estimate the Galactic star formation rate.Comment: 12 pages, 8 figures, accepted for publication in MNRA

    The ASTRO-F Mission : Large Area Infrared Survey

    Full text link
    ASTRO-F is the first Japanese satellite mission dedicated for large area surveys in the infrared. The 69cm aperture telescope and scientific instruments are cooled to 6K by liquid Helium and mechanical coolers. During the expected mission life of more than 500 days, ASTRO-F will make the most advanced all-sky survey in the mid- to far-infrared since the Infrared astronomical Satellite (IRAS). The survey will be made in 6 wavebands and will include the first all sky survey at >100-160(mu)m. Deep imaging and spectroscopic surveys with pointed observations will also be carried out in 13 wavelength bands from 2-160(mu)m. ASTRO-F should detect more than a half million galaxies tracing the large-scale structure of the Universe out to redshifts of unity, detecting rare, exotic extraordinarily luminous objects at high redshift, numerous brown dwarfs, Vega-like stars, protostars, and will reveal the large-scale structure of nearby galactic star forming regions. ASTRO-F is a perfect complement to Spitzer Space Telescope in respect of its wide sky and wavelength coverage. Approximately 30 percent of pointed observations will be allocated to an open-time opportunity. Updated pre-flight ensitivities as well as the observation plan including the large-area surveys are described.Comment: accepted for publication in Advances in Space Research, 15 pages, 7 Postscript figures, uses elsart.cl
    corecore